
UNIVERSIDADE DE SÃO PAULO
Instituto de Ciências Matemáticas e de Computação

Sistema Automático para Geração de Modelos Base de
Regressão

Leandro Giusti Mugnaini

São Carlos – SP

Sistema Automático para Geração de Modelos Base de Regressão

Leandro Giusti Mugnaini

Orientador: Prof. Dr. Fernando Santos Osório

Coorientador: Prof. Dr. Diego Renan Bruno

Monografia final de conclusão de curso apresentada
ao Instituto de Ciências Matemáticas e de
Computação – ICMC-USP, como requisito parcial
para obtenção do título de Bacharel em Engenharia
de Computação.
Área de Concentração: Aprendizagem de Máquina

USP – São Carlos
Novembro de 2021

Mugnaini, Leandro Giusti
Sistema Automático para Geração de Modelos Base de

Regressão / Leandro Giusti Mugnaini. – São Carlos – SP,
2021.

56 p.; 29,7 cm.

Orientador: Fernando Santos Osório.
Coorientador: Diego Renan Bruno.
Monografia (Graduação) – Instituto de Ciências

Matemáticas e de Computação (ICMC/USP), São Carlos –
SP, 2021.

1. Aprendizagem de Máquina. 2. Regressão.
3. Pré-Processamento. 4. Modelagem. 5. Big Data. I.
Osório, Fernando Santos. II. Instituto de Ciências
Matemáticas e de Computação (ICMC/USP). III. Título.

Este trabalho é dedicado à todas as pessoas que fizeram parte da

minha história na longa jornada da vida.

O que eu me tornei hoje nada mais é do que a soma das contribuições individuais de cada um

de vocês!!!

AGRADECIMENTOS

Gostaria de agradecer primeiramente à minha mãe Isabel e meu pai Eden pelo apoio
emocional e suporte dados durante toda a minha trajetória, desde a infância até os dias de hoje,
sempre me incentivando a estar em constante evolução. À minha irmã Aline, agradeço pelo
companheirismo, apoio e bons momentos vividos durante todos esses anos. Essa graduação não
teria sido concluída sem a ajuda de vocês três, muito obrigado por tudo!!!

Aos meus amigos Alyson (Xeros), Bruno (Adele), João Marco (Yaya), Leonardo (Leo)
e Matheus (Barney), agradeço pelos bons momentos vividos durante a graduação (e fora dela)
e pelo apoio dado durante todos esses anos. Sem dúvidas a trajetória se tornou mais simples e
agradável quando nós nos tornamos amigos. Espero que nossa amizade dure para a vida toda!

Agradeço também aos meus companheiros de moradia, Gabriel e Fernando, que sempre
me deram apoio nos momentos difíceis e me ensinaram lições valiosas que levarei para a vida.

Ao meu orientador Prof. Dr. Diego Renan Bruno, muito obrigado por ter aceitado a
orientação e por toda a ajuda fornecida durante a elaboração deste projeto. Agradecimentos
especiais ao Prof. Dr. Fernando Santos Osório por ter apoiado a ideia e permitido que o projeto
fosse realizado.

Por fim, mas não menos importante, agradeço à toda população do Estado de São Paulo
que, através do ICMS, custeia as atividades realizadas nas Universidades Estaduais de SP,
tornando possível a formação de excelentes profissionais que impactarão de forma positiva a
sociedade.

“O jogo não acaba aqui e o

mais importante ainda está por vir!”

(Prof. Dr. Clóvis de Barros Filho)

RESUMO

MUGNAINI, L. G.. Sistema Automático para Geração de Modelos Base de Regressão.
2021. 56 f. Monografia (Graduação) – Instituto de Ciências Matemáticas e de Computação
(ICMC/USP), São Carlos – SP.

Com o avanço da inteligência artificial e a ascensão da era da Big Data, o volume, variedade e
velocidade dos dados que são coletados e que podem ser analisados cresce exponencialmente
a cada dia. Neste contexto, surge a necessidade de otimizar o tempo dos profissionais que
trabalham manipulando grandes conjuntos de dados - os cientistas de dados - para que eles
possam focar em tarefas menos repetitivas e de maior valor agregado. Este trabalho apresenta as
decisões de projeto e detalhes de implementação de um sistema gerador de modelos base para
problemas de regressão, que pode ser utilizado no primeiro contato do cientista com o conjunto
de dados que deve ser manipulado, gerando insights e direcionamentos sobre qual caminho
deve ser tomado na etapa seguinte. O sistema apresenta um módulo de pré-processamento,
que realizará manipulações genéricas nos dados, e um módulo de modelagem, que realizará
a definição, treinamento e avaliação de modelos de regressão clássicos. O sistema pode ser
facilmente customizado de acordo com a necessidade do usuário e sua saída estará disponível
para consulta em um endereço Web devido a utilização do MLFLow, software de gerenciamento
de modelos de aprendizagem de máquina.

Palavras-chave: Aprendizagem de Máquina, Regressão, Pré-Processamento, Modelagem, Big

Data.

LISTA DE ILUSTRAÇÕES

Figura 1 – Processo de K-Fold Cross-Validation para k = 5 26
Figura 2 – Exemplo de funcionamento do algoritmo KNN para k = 3 27
Figura 3 – Exemplo de funcionamento do algoritmo XGBoost com três árvores de decisão 28
Figura 4 – Exemplo de estrutura de uma rede neural com três camadas 28
Figura 5 – Exemplo de funcionamento do algoritmo RandomForest com três árvores de

decisão . 30
Figura 6 – Funcionamento da técnica SHAP . 31
Figura 7 – Exemplo de funcionamento do SHAP Values para classificação de imagens . 32
Figura 8 – Exemplo de gráfico de enxame . 33
Figura 9 – Exemplo de gráfico de barras . 34
Figura 10 – Exemplo de interface do MLFlow . 35
Figura 11 – Diagrama de execução das etapas . 37
Figura 12 – Métodos criados na classe responsável pelo pré-processamento 39
Figura 13 – Métodos criados na classe responsável pela modelagem 41
Figura 14 – Lista com os experimentos realizados com os datasets 44
Figura 15 – Histograma com a variável alvo . 45
Figura 16 – Resultados da etapa de pré-processamento 45
Figura 17 – Resultados da etapa de modelagem, contendo os modelos e métricas de

desempenho . 46
Figura 18 – Gráfico SHAP com o sumário dos dados 46
Figura 19 – Gráfico SHAP enxame com informações de importância de variáveis 47
Figura 20 – Diretório do projeto . 53

LISTA DE CÓDIGOS-FONTE

Código-fonte 1 – Exemplo de arquivo .ini . 20
Código-fonte 2 – Método runner do módulo de pré-processamento 38
Código-fonte 3 – Exemplos de assert utilizados na implementação 39
Código-fonte 4 – Método runner do módulo de modelagem 40
Código-fonte 5 – Método get_models da classe de modelagem 41
Código-fonte 6 – Arquivo conf.ini . 53

SUMÁRIO

1 INTRODUÇÃO . 17
1.1 Motivação e Contextualização . 17
1.2 Objetivos . 18
1.3 Organização . 18

2 MÉTODOS, TÉCNICAS E TECNOLOGIAS UTILIZADAS 19
2.1 Tecnologias Utilizadas . 19
2.2 Detalhamento do módulo: Pré-Processamento 21
2.2.1 Criação de histograma com a variável alvo e tabela de correlações 21
2.2.2 Remoção de variáveis altamente correlacionadas, com variância

nula e com valores faltantes . 22
2.2.3 Conversão de variáveis para tipos de dados válidos e imputação de

valores faltantes . 23
2.2.4 Estandardização e normalização dos dados 24
2.3 Detalhamento do módulo: Modelagem 24
2.3.1 Separação dos dados em treino e teste 25
2.3.2 Escolha dos modelos de aprendizagem de máquina 25
2.3.3 Escolha das métricas para cálculo do desempenho 29
2.3.4 Criação dos gráficos de importância de variáveis 31
2.3.5 Registro dos resultados no MLFlow 33
2.4 Dados utilizados para teste do sistema 33

3 DESENVOLVIMENTO . 37
3.1 O Projeto . 37
3.2 Atividades Realizadas . 38
3.2.1 Implementação do módulo de Pré-Processamento 38
3.2.2 Implementação do módulo de modelagem 40
3.2.3 Teste e validação do sistema . 42
3.3 Resultados . 43
3.4 Dificuldades e Limitações . 43

4 CONCLUSÃO . 49
4.1 Contribuições . 49

REFERÊNCIAS . 51

APÊNDICE A ESTRUTURA DO PROJETO E INSTALAÇÃO DO
SISTEMA . 53

A.1 Estrutura do Projeto . 53
A.2 Instalação do sistema e configurações adicionais 55

17

Capítulo 1

INTRODUÇÃO

1.1 Motivação e Contextualização
Por meio da revolução científica e tecnológica que vem ocorrendo nas últimas décadas,

proporcionada principalmente pela evolução das técnicas de software e hardware, sistemas e
soluções cada vez mais complexos estão sendo construídos, proporcionando mudanças radicais
na forma que as pessoas vivem em sociedade (MAKRIDAKIS, 2017). Tais mudanças afetam
aspectos em diferentes âmbitos, influenciando hábitos de consumo, meios de comunicação,
formas de trabalho, relações pessoais e até políticas públicas de nações. Neste cenário, a inteli-
gência artificial surge como grande protagonista, estando presente nos mais diversos setores da
sociedade.

Com o advento da inteligência artificial e o início da era do Big Data, no qual os dados
são coletados em volume e variedade cada vez maiores, em velocidades surpreendentes, surge
também uma crescente demanda de profissionais que trabalham com dados. O cientista de
dados é um dos profissionais que atuam neste cenário, manipulando dados, criando e utilizando
modelos de aprendizagem de máquina, além de utilizar conhecimentos de computação, estatística
e probabilidade para auxiliar na tomada de decisões.

Quando os cientistas de dados estão lidando com um problema pela primeira vez, uma
quantidade de tempo considerável é empreendida buscando entender e preparar os dados, além
de realizar análises com o objetivo de determinar qual o próximo passo que deve ser dado. No
entanto, muitas dessas tarefas e análises são comuns a diferentes projetos, se tratando portanto de
um processo que pode ser automatizado. Existem atualmente técnicas que realizam a automação
de processos de machine learning, conceito chamado de AutoML (HE; ZHAO; CHU, 2021),
porém muitas dessas técnicas ainda são apenas protótipos. As técnicas que estão mais avançadas
(e tornaram-se inclusive soluções comerciais) são de difícil acesso devido ao alto custo das
licenças comerciais.

A motivação deste projeto é de criar um sistema capaz de automatizar e agilizar a
etapa inicial do trabalho do cientista de dados, focando o trabalho para problemas de regressão,
tornando possível que o cientista foque seus esforços em tarefas que agregam mais valor ao
projeto. Como se trata de um sistema regressor, o objetivo do sistema é utilizar as variáveis
de entrada e através de um processo de modelagem, predizer um valor real para a variável
alvo. Os problemas de regressão são caracterizados como aprendizado supervisionado e podem

18 Capítulo 1. Introdução

assumir complexidades diversas, sendo utilizados em uma infinidade de cenários que vão desde o
mercado financeiro, na predição de fraudes bancárias, até áreas de E-commerce, na precificação
de produtos em plataformas online por exemplo.

1.2 Objetivos
O objetivo principal deste projeto é de automatizar a etapa inicial da análise de dados

e modelos de aprendizagem de máquina, gerando resultados que possam ser conferidos rapi-
damente pelo cientista de dados, permitindo que ele prossiga com um desenvolvimento mais
aprofundado e direcionado, em um menor tempo.

1.3 Organização
No Capítulo 2 são apresentados os métodos, técnicas e tecnologias utilizados para o

desenvolvimento do trabalho, bem como referências bibliográficas que adicionam embasamento
científico ao projeto. No Capítulo 3, apresentam-se a estrutura geral do sistema, detalhes das
atividades realizadas, resultados obtidos e dificuldades/limitações encontradas. No Capítulo 4,
encontram-se as conclusões sobre o projeto desenvolvido. Por fim, no Apêndice A, encontram-se
detalhes sobre a instalação e execução do sistema.

19

Capítulo 2

MÉTODOS, TÉCNICAS E TECNOLOGIAS
UTILIZADAS

2.1 Tecnologias Utilizadas

Para realizar o desenvolvimento do projeto, a linguagem escolhida foi a linguagem
Python (ROSSUM; DRAKE, 2009). A escolha da linguagem deve-se a grande diversidade de
pacotes e bibliotecas disponíveis, o que a tornou uma das principais ferramentas dos cientistas
de dados (junto com a linguagem R). Os pacotes principais utilizados para manipulação, análise
e modelagem de dados foram:

• Matplotlib: trata-se de uma biblioteca utilizada para criar visualizações estáticas, animadas
e interativas, através da utilização de dados tabulares (HUNTER, 2007);

• scikit-learn: utilizado nas etapas de pré-processamento dos dados e na etapa de modelagem
(PEDREGOSA; VAROQUAUX et al., 2011);

• pandas: utilizado para leitura dos arquivos csv e manipulação dos dados (MCKINNEY et

al., 2010);

• xgboost: utilizado para fornecimento do modelo XGBRegressor (CHEN T.; GUESTRIN,
2016).

• SHAP (SHapley Additive exPlanations): utilizado para traçar visualizações que explicam
a saída dos modelos de aprendizado de máquina utilizados (LUNDBERG; LEE, 2017b).

Para instalar os pacotes e executar o sistema, optou-se pela utilização de um ambiente
virtual, utilizando o módulo venv da linguagem Python, de forma a isolar a instância Python
do sistema operacional da instância Python do regressor, permitindo que o regressor e suas
dependências sejam instalados e removidos com mais facilidade. Os pacotes utilizados devem
ser instalados através do gerenciador de pacotes pip.

Além disso, utilizou-se o pacote MLFLow da linguagem Python. O MLFlow trata-se
de uma plataforma de código aberto, utilizada para gerenciar os ciclos de vida de projetos de
aprendizado de máquina. Neste projeto, o MLFlow será utilizado para facilitar a visualização e

20 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

registro dos resultados e métricas dos modelos testados, melhorando a experiência do usuário do
sistema.

O MLFlow utilizará uma base de dados para registrar os artefatos, que no caso deste
projeto serão as métricas de desempenho, modelos e visualizações. Para gerenciar essa base de
dados, optou-se por utilizar o PostgreSQL. A utilização de uma base de dados é importante, pois
permite que o usuário armazene as informações em um cluster, um servidor remoto ou até na
máquina local, conforme a necessidade.

Mais detalhes sobre a instalação e configuração do sistema estão presentes na Seção 3.
Além disso, as documentações de cada um dos pacotes e bibliotecas estão presentes no Apêndice
A.

O sistema de regressão automático, depois de configurado, possui basicamente dois
módulos principais: o módulo de pré-processamento e o módulo de modelagem. Os módulos
foram desenvolvidos utilizando o paradigma de orientação a objetos, com o objetivo de permitir
que as classes sejam herdadas e os métodos sobrescritos, caso alguma modificação pontual
necessite ser feita para tratar de algum problema específico. Cada um dos módulos possui métodos
que realizam tarefas genéricas distintas, que englobam manipulação, análise e modelagem dos
dados.

Algumas etapas do módulo de pré-processamento e de modelagem são customizáveis
e devem ser definidas pelo usuário através do preenchimento de um arquivo de configuração
conf.ini. A escolha do formato .ini se deve pela simplicidade de sua estrutura, sendo composta
por seções e propriedades. Um exemplo de arquivo .ini pode ser conferido no Código-fonte 1.

Código-fonte 1: Exemplo de arquivo .ini

1 [SEÇÃO1]
2 # Definindo o valor das chaves da SEÇÃO1
3

4 ChaveExemplo1=6090
5

6 ChaveExemplo2=10
7

8 ChaveExemplo3=/home/ubuntu/tcc/exemplo/
9

10

11 [SEÇÃO2]
12 # Definindo o valor das chaves da SEÇÃO2
13

14 ChaveExemplo1=1
15

16 ChaveExemplo2=/opt/ecs/mvuser/

2.2. Detalhamento do módulo: Pré-Processamento 21

Com o arquivo de configuração preenchido, basta o usuário ativar o ambiente virtual,
ativar o MLFlow e executar os módulos de pré-processamento e modelagem. Desta forma, a
execução será automaticamente detectada pelo MLFlow e os resultados estarão disponíveis para
consulta.

2.2 Detalhamento do módulo: Pré-Processamento
Como apontado na Seção 2.1, os módulos de pré-processamento e modelagem possuem

métodos que realizam manipulações, análises e modelagens genéricas nos dados, podendo ou
não serem personalizadas pelo usuário.

No caso do módulo de pré-processamento, as seguintes tarefas são realizadas:

• Criação de um histograma com a distribuição dos valores da variável alvo;

• Criação de uma tabela contendo a correlação entre diferentes features;

• Remoção de colunas altamente correlacionadas, que excedam um limiar definido pelo
usuário, deixando apenas uma das colunas no dataset;

• Remoção de colunas com valores nulos, que excedam um limiar definido pelo usuário;

• Remoção de colunas com variância nula;

• Conversão de colunas não numéricas para colunas numéricas;

• Imputação de valores faltantes;

• Normalização dos dados;

• Estandardização dos dados.

Cada uma das etapas são explicadas nas sub-seções a seguir.

2.2.1 Criação de histograma com a variável alvo e tabela de corre-
lações

Para a criação do histograma com a distribuição dos valores da variável alvo, é necessário
utilizar uma abordagem que leve em consideração a distribuição e a quantidade de valores no
conjunto de dados analisado. Dessa forma, optou-se por definir a largura das barras do histograma
de forma dinâmica, utilizando regra Freedman-Diaconi (FREEDMAN; DIACONIS, 1981), dada
pela expressão:

Largura = 2
IIQ(x)

3
√

n
(2.1)

22 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

Onde IIQ(x) representa o intervalo interquartil dos dados e n representa o número de
observações na amostra x.

Com esta regra, objetiva-se definir larguras de barras que sejam robustas a outliers, já
que apenas a dispersão dos dados e o tamanho da amostra são levados em consideração.

Para a análise de correlação, utilizou-se o Coeficiente de Correlação de Pearson como
métrica para avaliar a correlação entre diferentes features. O coeficiente de Pearson é definido
pela seguinte expressão:

ρ =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2 ∑

n
i=1(yi− ȳ)2

(2.2)

O coeficiente de correlação ρ está contido no intervalo [−1,1]. Valores positivos indicam
que as variáveis são positivamente correlacionadas, ou seja, se uma variável aumenta de valor
a outra também aumenta. Já valores negativos indicam uma correlação negativa, indicando
que quando uma variável aumenta, a outra diminui. Se |ρ| ' 1, as variáveis são altamente
correlacionadas e se ρ ' 0, as variáveis são fracamente correlacionadas. No projeto, um arquivo
.csv é automaticamente salvo, contendo a correlação entre todas as variáveis.

2.2.2 Remoção de variáveis altamente correlacionadas, com variân-
cia nula e com valores faltantes

Utilizando a análise de correlação, é possível remover variáveis altamente correlacionadas
entre si. Com a era da Big Data, conjuntos de dados cada vez maiores estão sendo utilizados,
fazendo com que os modelos demorem mais tempo para serem treinados, testados e validados.
Dessa forma, a remoção de variáveis que são irrelevantes/redundantes ao problema pode trazer
economias de tempo, poder computacional e em alguns casos até melhorar a capacidade de
generalização do algoritmo (DASH; LIU, 1997). Assim, adicionou-se ao projeto a possibilidade
do usuário definir um limiar de correlação, e caso variáveis superem esse limiar, apenas uma das
duas variáveis será mantida.

Além da remoção de variáveis altamente correlacionadas, a remoção de variáveis com
muitos atributos ausentes é outra técnica utilizada no pré-processamento de dados, sendo geral-
mente empregada quando não há risco de perda de informações importantes. Dessa forma, cabe
ao usuário definir um limiar aceitável de valores nulos para as variáveis. Caso o usuário defina
por exemplo, o valor 0.9, variáveis que possuam 90% ou mais valores nulos serão removidas. É
importante ressaltar que essa técnica não deve ser utilizada quando o conjunto de dados possui
poucas variáveis, já que neste caso qualquer perda de informações pode impactar no resultado
do modelo.

A remoção de variáveis com variância nula também é uma técnica utilizada para diminuir
o tamanho do conjunto de dados e reduzir a dimensionalidade dos dados. A variância (σ2) da

2.2. Detalhamento do módulo: Pré-Processamento 23

população yi, onde i = 1,2, ...,N, é definida pela seguinte equação:

σ
2 =

1
N

N

∑
i=1

(yi−µ)2 (2.3)

Onde µ é a média da população yi. Já no caso de variáveis Booleanas, que seguem uma
distribuição de Bernoulli, a variância é dada por:

σ
2 = p(1− p) (2.4)

Onde p representa a probabilidade de sucesso (1 = sucesso, 0 = fracasso).

Variáveis com variância nula não fornecem melhorias de performance ao modelo, pois
os modelos precisam identificar padrões distintos entre os dados para realizar predições e como
todas as observações de determinada variável são idênticas, não é possível identificar um padrão
que diferencie as observações, por isso é possível removê-las sem perdas na performance.

2.2.3 Conversão de variáveis para tipos de dados válidos e imputação
de valores faltantes

Outro desafio enfrentado no pré-processamento, é garantir que os dados estejam com tipos
de dados válidos. Nos problemas de regressão, os modelos aceitam tipos de dados numéricos (int,
float, bool), dessa forma é necessário converter tipos de dados não numéricos (categóricos) para
numéricos. Neste projeto, realizou-se o procedimento de One-Hot Encoding, que transformará as
variáveis categóricas em novas variáveis binárias, que são aceitas como entrada pelos modelos.
Um exemplo de transformação utilizando a técnica de One-Hot Encoding pode ser conferido nas
Tabelas 1 e 2:

Tabela 1 – Exemplo de variável categórica antes da transformação One-Hot Encoding

Cor
Amarelo
Amarelo
Verde
Azul

Fonte: Elaborada pelo autor.

Outra técnica para tratamento de valores ausentes, é a imputação. Neste projeto, utilizou-
se a imputação através do algoritmo KNN (k-Nearest Neighbors). Neste método, K vizinhos são
escolhidos com base em alguma medida de distância e a média dos valores dos k vizinhos é usada
como uma estimativa de imputação (TROYANSKAYA et al., 2001). Desta forma, os valores
faltantes são substituídos por valores prováveis que a variável realmente teria, apresentando um

24 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

Tabela 2 – Variável categórica transformada em variáveis numéricas depois da transformação One-Hot Encoding

Amarelo Verde Azul
1 0 0
1 0 0
0 1 0
0 0 1
Fonte: Elaborada pelo autor.

resultado melhor do que outras técnicas, como por exemplo uma simples substituição pela média
da variável.

2.2.4 Estandardização e normalização dos dados

Por fim, para finalizar os detalhes do módulo de pré-processamento, é possível realizar a
normalização ou estandardização dos dados (SOLA; SEVILLA, 1997). A técnica de normaliza-
ção utilizada é a Min-Max Scaling, que utiliza os valores máximos e mínimos das variáveis para
garantir que todos os dados estejam no intervalo [0,1]. A normalização Min-Max é dada por:

xnorm =
x−min(x)

max(x)−min(x)
(2.5)

A normalização evita que o algoritmo fique enviesado para as variáveis com maior ordem
de grandeza (evitando o overfitting), trazendo ganhos de performance no processo de modelagem.
Já a estandardização (ou normalização Z− score), consiste em fazer com que os dados tenham
média 0 e desvio padrão igual a 1. Para realizar a normalização, a seguinte expressão é utilizada:

z =
x−µ

σ
(2.6)

A escolha entre normalização ou estandardização deve ser realizada analisando a dis-
tribuição dos dados. Caso a distribuição não seja Gaussiana ou o desvio padrão pequeno, é
recomendável a utilização da normalização. Caso contrário, a estandardização é uma boa técnica
a ser utilizada. Neste projeto, o usuário deve escolher qual das duas técnicas ele deseja utilizar,
mudando entre as técnicas de acordo com o conjunto de dados que está sendo analisado.

2.3 Detalhamento do módulo: Modelagem

Para o módulo de modelagem, as seguintes etapas são realizadas:

• Separação dos dados em treino e teste;

• Escolha dos modelos de aprendizagem de máquina desejados;

2.3. Detalhamento do módulo: Modelagem 25

• Escolha das métricas para cálculo do desempenho;

• Criação dos gráficos de importância de variáveis;

• Registro dos resultados finais no MLFlow.

Cada uma das etapas é explicada nas sub-seções a seguir.

2.3.1 Separação dos dados em treino e teste

A separação dos dados em treino e teste é personalizada pelo usuário através de um
parâmetro no arquivo conf.ini. O conjunto de treino passará por um processo de k-fold Cross-

Validation (REFAEILZADEH; TANG; LIU, 2016), que separa o conjunto de treino em k

diferentes folds, utilizando k−1 folds para treinamento e 1 fold para teste. O processo é repetido
k vezes, de forma que todo o conjunto de treino é utilizado para treinamento e para teste. Após
o treinamento e definição dos melhores parâmetros, o conjunto original de testes é utilizado
para validar o processo de modelagem. Na Figura 1 é possível conferir o funcionamento deste
processo, para o caso de k = 5.

O número de folds também é um parâmetro que deve ser definido pelo usuário, logo é
possível configurar tanto o tamanho que o conjunto de treinamento terá, quanto o número de
folds que ele será dividido, sendo possível ajustá-los de acordo com o problema que está sendo
analisado e o tamanho do conjunto de dados.

2.3.2 Escolha dos modelos de aprendizagem de máquina

Em relação aos modelos disponíveis, existem cinco modelos à disposição para o usuário:

• K-Neighbors Regressor (KNN);

• XGBoost;

• Perceptron Multicamadas (Multilayer Perceptron - MLP);

• Lasso Regression;

• Random Forest Regressor.

Tais modelos foram escolhidos com o objetivo de fornecer diferentes estratégias para
solução dos problemas de regressão. Como o desempenho dos modelos dependem muito de como
estão estruturados os dados de entrada, o teste de modelos que adotam diferentes abordagens pode
fazer com que resultados melhores sejam obtidos. A seguir é possível conferir uma descrição
breve do funcionamento de cada algoritmo e o motivo da escolha para compor o sistema.

26 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

Figura 1 – Processo de K-Fold Cross-Validation para k = 5

Fonte: Elaborada pelo autor.

O algoritmo KNN, apesar de simples, pode apresentar resultados interessantes depen-
dendo da complexidade do problema. O algoritmo consiste em calcular uma métrica de distância
entre os dados, utilizando-a para encontrar os K vizinhos mais próximos. Neste projeto, optou-se
pela utilização da distância Euclidiana e um conjunto de valores k = {3,5,7}. Para os problemas
de regressão, que possuem o objetivo de predizer um valor real, utiliza-se a média das instâncias
dos K vizinhos mais próximos como valor predito.

Na Figura 2 é possível conferir como o algoritmo KNN funciona, no caso de k = 3. O
triângulo vermelho representa a instância que se deseja realizar a predição, os círculos verdes
representam os três vizinhos mais próximos e os ”X” em verde representam os valores de cada
um dos vizinhos. Neste caso o valor predito pelo algoritmo será a média dos três valores ”X”.

O XGBoost é um algoritmo de gradient boosting que implementa várias melhorias em
relação aos algoritmos de gradient boosting clássicos, como regularização, criação de uma função
de custo personalizada e paralelização do processamento. A ideia do XGBoost é utilizar uma
série de árvores de decisão como preditores fracos, onde cada árvore aprende com os erros da
árvore anterior, gerando assim um preditor forte no fim da execução do algoritmo. Para realizar

2.3. Detalhamento do módulo: Modelagem 27

Figura 2 – Exemplo de funcionamento do algoritmo KNN para k = 3

Fonte: Elaborada pelo autor.

o processo de melhoria do modelo, utiliza-se a técnica do gradiente descendente, objetivando
assim reduzir o valor da função de custo. A escolha do XGBoost para compor um dos modelos
disponíveis se deve ao alto desempenho proporcionado pelo algoritmo, sendo um dos modelos
mais utilizados por cientistas de dados para predizer dados tabulares em problemas de regressão
e classificação. Na Figura 3, é possível conferir o funcionamento do algoritmo XGBoost. Destaca-
se a passagem dos resíduos de uma árvore para outra, uma das etapas principais dos algoritmos
de boosting.

As redes neurais são utilizadas em uma variedade enorme de aplicações e têm promovido
resultados excelentes em diversas áreas como visão computacional, reconhecimento de fala e
processamento de linguagem natural, por exemplo. O MLP nada mais é que um modelo de rede
neural que apresenta mais de uma camada de neurônios, sendo basicamente composto por uma
camada de entrada, uma camada de saída e uma ou mais camadas intermediárias, chamadas de
camadas escondidas (hidden layers). Cada camada é composta por vários nós (neurônios), sendo
que cada um desses nós possui um peso associado. A função de ativação (que neste projeto é
a ReLU (Rectified Linear Unit)), é responsável pela ativação ou não desses pesos de acordo
com a variável de entrada, passando para os nós seguinte uma saída. Na última camada é então
calculada a função de perda (loss), que compara a saída da rede com os dados reais do conjunto
de treino, calculando o erro entre eles. Caso o erro seja alto, o processo de backpropagation entra
em ação, atuando com o algoritmo de gradiente descendente de modo a atualizar os pesos das
funções de todos os nós, otimizando assim o resultado da rede. Devido à ampla utilização das
redes neurais nos processos de modelagem de dados, decidiu-se por utilizá-las também neste
projeto. Na Figura 4 é possível conferir uma estrutura de rede neural contendo três camadas: 1

28 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

Figura 3 – Exemplo de funcionamento do algoritmo XGBoost com três árvores de decisão

Fonte: Adaptada de Wang, Chakraborty e Chakraborty (2021, 5).

camada de entrada, 1 camada escondida e 1 camada de saída.

Figura 4 – Exemplo de estrutura de uma rede neural com três camadas

Fonte: Elaborada pelo autor.

O modelo de regressão por Lasso (Least Absolute Shrinkage and Selection Operator nada
mais é que um modelo de regressão linear tradicional, adicionado de um fator de regularização
L1 (ou Lasso). Um modelo de regressão linear múltipla, tenta ajustar uma função linear aos
dados com a forma:

ŷi = β0 +β1xi1 +β2xi2 + ...+βpxip

Onde ŷi é a variável dependente, xi são as variáveis independentes, β0 é o coeficiente de
interceptação e βp são os pesos atribuídos a cada variável independente.

2.3. Detalhamento do módulo: Modelagem 29

O procedimento de ajuste ocorre através da escolha dos coeficientes β , de forma a
minimizar a função custo, dada por:

n

∑
i=1

(yi− ŷi)
2 =

n

∑
i=1

(yi−
p

∑
j=0

β jxi j)
2

Onde n é o número de instâncias do dado e p é o número de features.

No entanto, existe uma possibilidade do modelo se ajustar demais aos dados e aos
possíveis ruídos, se tornando enviesado no conjunto de treinamento, o que causa um aumento
na variância quando se realiza o teste. O fator de regularização Lasso objetiva diminuir o
viés, piorando propositalmente a performance do modelo no conjunto de treinamento, porém
resultando em uma melhor generalização no conjunto de teste. O fator de regularização atua na
função custo, deixando-a da seguinte forma:

n

∑
i=1

(yi− ŷi)
2 =

n

∑
i=1

(yi−
p

∑
j=0

β jxi j)
2 +λ

p

∑
j=0
|β j|

Onde λ denota o fator de encolhimento de cada peso. Um fator λ = 0 implica em um
modelo de regressão linear múltipla tradicional, já um fator λ = ∞ implica que o valor de todas
as variáveis são desconsideradas. Ou seja, quanto maior o valor de λ , maior o viés do modelo e
quanto menor o valor de λ , maior a variância do modelo. A escolha deste modelo para compor a
lista de modelos disponíveis no sistema se dá pela sua simplicidade e por ser um dos modelos
base para os problemas de regressão.

Por fim, o último modelo que compõe o sistema é o Random Forest Regressor. Diferente
do algoritmo XGBoost, que utiliza uma técnica de Boosting (onde cada árvore de decisão aprendia
com os erros da árvore anterior), o modelo Random Forest utiliza uma técnica chamada Bagging.
Essa técnica consiste em criar diversas amostras, escolhidas aleatoriamente com substituição,
com os dados de treinamento. Cada subconjunto é usado para o treinamento de uma árvore de
decisão diferente. Teremos então um conjunto de diferentes modelos, que podem ser utilizados
para criar um estimador poderoso ao calcular-se a média de todos os estimadores individuais. O
resultado torna-se robusto a eventuais erros, já que a média de diversas árvores tende a diminuir
os erros causados por estimadores com baixa performance. Na Figura 5 é possível conferir o
funcionamento de uma Random Forest. Nota-se que diferente do algoritmo XGBoost, as árvores
de decisão não trocam informações entre si e o resultado final é dado pela média das diferentes
árvores.

2.3.3 Escolha das métricas para cálculo do desempenho

Depois que os modelos desejados são escolhidos pelo usuário, o sistema executa o
processo de modelagem, gerando métricas para cada modelo. As métricas escolhidas para

30 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

Figura 5 – Exemplo de funcionamento do algoritmo RandomForest com três árvores de decisão

Fonte: Adaptada de Wang, Chakraborty e Chakraborty (2021, 5).

representar o desempenho dos modelos foram: Erro Absoluto Médio (Mean Absolute Error -

MAE), Erro Quadrático Médio (Mean Squared Error - MSE) e Coeficiente de Determinação
(R2).

O Erro Absoluto Médio é calculado da seguinte forma:

MAE =
1
N

N

∑
i=1
|yi− ŷi|

Já o Erro Quadrático Médio é calculado por:

MSE =
1
N

N

∑
i=1

(yi− ŷi)
2

Em ambos os casos, N é o número de instâncias dos dados, yi é o valor real da instância
e ŷi é o valor predito pelo modelo.

O MAE é uma boa métrica para mostrar por quanto o modelo está errando, pois através
do cálculo do valor absoluto desconsideram-se os sinais do erro, que poderiam causar uma falsa
impressão de boa performance, já que erros positivos poderiam estar anulando erros negativos.
O MSE por outro lado, faz com que erros grandes nas predições sejam evidenciados, ao elevar
ao quadrado os erros de predição.

O Coeficiente de Determinação (R2) é utilizado para mostrar por quanto o modelo
treinado explica os dados melhor que a média. O valor do coeficiente na maioria dos casos está
no intervalo [0,1], porém algumas vezes pode apresentar resultado negativo, neste caso indicando

2.3. Detalhamento do módulo: Modelagem 31

que o modelo apresenta resultado pior do que se estivéssemos utilizando apenas a média dos
dados como valor predito. A expressão do R2 é dada por:

R2(y, ŷ) = 1− ∑
n
i=1(yi− ŷi)

2

∑
n
i=1(yi− ȳ)2

Onde ȳ = 1
n ∑

n
i=1 yi.

Um valor de R2 igual a 0 mostra que o modelo não conseguiu capturar nada além de um
modelo que simplesmente pega a média dos dados. Já um valor igual a 0.95, por exemplo, mostra
que o modelo conseguiu explicar 95% da variância dos dados, apresentando uma excelente
performance.

2.3.4 Criação dos gráficos de importância de variáveis

Para criar os gráficos de importância de variáveis, utilizou-se a técnica SHAP (SHapley

Additive exPlanations), que possui o objetivo de explicar as saídas dos modelos de Machine

Learning, que são muitas vezes utilizados como caixas-pretas. A Figura 6 mostra a ideia do
funcionamento da técnica SHAP.

Figura 6 – Funcionamento da técnica SHAP

Fonte: Lundberg e Lee (2017a).

O SHAP mede o impacto das variáveis, levando em consideração a interação com outras
variáveis. Os valores de Shapley calculam a importância de uma variável comparando o que um
modelo prevê com e sem a variável. As vantagens de se utilizar o SHAP para explicar o impacto
das variáveis são:

• Interpretabilidade Global: Os valores SHAP podem mostrar o quanto cada variável con-
tribui, positiva ou negativamente, para a variável alvo. Funciona como um gráfico de

32 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

importância de variáveis, porém mostrando além disso se as relações com a variável alvo
são positivas ou negativas;

• Interpretabilidade Local: É possível calcular os SHAP Values de cada observação de modo
separado, aumentando assim a transparência do modelo.

Na Figura 7 é possível conferir como o SHAP funciona em um problema de classificação
de imagens. Neste caso, pixeis vermelhos representam valores SHAP positivos, que aumentam a
probabilidade da imagem ser daquela classe, e pixeis azuis representam valores SHAP negativos,
que diminuem a probabilidade da imagem ser daquela classe.

Figura 7 – Exemplo de funcionamento do SHAP Values para classificação de imagens

Fonte: Adaptada de Lundberg e Lee (2017a).

Para problemas de regressão, os valores SHAP funcionam de forma semelhante. Neste
projeto, optou-se pela utilização de duas visualizações diferentes: gráfico enxame e gráfico em
barras.

O gráfico enxame apresenta o valor SHAP para todas as amostras e variáveis, mostrando
o impacto de cada amostra no valor final da predição. No exemplo da Figura 8, pode-se perceber
que a variável G1 é a variável mais importante e que valores altos dessa variável indicam um
valor alto da variável alvo, como mostra a magnitude dos valores SHAP e a cor dos pontos
vermelhos e azuis.

Já o gráfico em barras apresenta a média do valor absoluto dos valores SHAP, apresen-
tando nesse caso uma medida mais generalizada da importância das variáveis. No exemplo da
Figura 9, pode-se conferir que a variável G1 é muito importante para a predição da variável alvo.

2.4. Dados utilizados para teste do sistema 33

Figura 8 – Exemplo de gráfico de enxame

Fonte: Elaborada pelo autor.

2.3.5 Registro dos resultados no MLFlow

Por fim, os resultados são registrados no MLFlow. Na Figura 10 possível conferir um
exemplo da interface do MLFlow.

2.4 Dados utilizados para teste do sistema

Para realizar o teste do sistema e garantir que todas as funcionalidades estão funcionando
corretamente, escolheu-se três conjuntos de dados. Os conjuntos de dados foram os seguintes:

• The Boston Housing Dataset (HARRISON; RUBINFELD, 1978)

• Student Performance Dataset (CORTEZ; SILVA, 2008)

• Wine Quality Dataset (CORTEZ et al., 2009)

34 Capítulo 2. Métodos, Técnicas e Tecnologias Utilizadas

Figura 9 – Exemplo de gráfico de barras

Fonte: Elaborada pelo autor.

A escolha desses três datasets ocorreu pela possibilidade de se testar diferentes funci-
onalidades do sistema, dado a diversidade proporcionada por cada conjunto de dados e por se
tratarem de datasets bastante utilizados em benchmarks de algoritmos e modelos.

2.4. Dados utilizados para teste do sistema 35

Figura 10 – Exemplo de interface do MLFlow

Fonte: MLflow (2018).

37

Capítulo 3

DESENVOLVIMENTO

3.1 O Projeto
Como já descrito nas seções anteriores, o objetivo deste projeto é criar um sistema que

realize análises de regressão, sem a necessidade do cientista de dados trabalhar diretamente com
o código. As etapas que o usuário deverá executar para realizar a análise podem ser conferidas
no diagrama da Figura 11:

Figura 11 – Diagrama de execução das etapas

Fonte: Elaborada pelo autor.

No Apêndice A, é possível obter mais detalhes sobre o processo de instalação do sistema,
além da estrutura de diretórios e arquivos do projeto. Neste apêndice, também é possível conferir
o processo de execução das três primeiras etapas do sistema, que consiste na ativação do ambiente
virtual, do servidor MLFlow, inserção do arquivo com os dados na pasta correta e preenchimento
do arquivo conf.ini.

Depois de ter realizado as três primeiras etapas, basta o usuário executar os arquivos
preprocessing.py e modeling.py, que estão dentro da pasta code. Para executar, basta digitar o
seguinte comando:

$ python preprocessing.py && python modeling.py

Os resultados estarão então disponíveis no endereço configurado pelo usuário (por padrão:
0.0.0.0:5000), bastando digitar o endereço no navegador e utilizar a interface do MLFlow.

38 Capítulo 3. Desenvolvimento

3.2 Atividades Realizadas
Primeiramente, traçou-se um plano sobre a estrutura geral do projeto. Neste plano,

definiu-se quais seriam os módulos principais que o sistema teria, além de decidir pela utilização
do MLFlow para registro de resultados. Com a estrutura principal do sistema definida, iniciou-se
a pesquisa bibliográfica.

A pesquisa bibliográfica consistiu em pesquisar artigos, livros e revistas, procurando
definir quais seriam as melhores funcionalidades para o sistema. Utilizou-se também conheci-
mentos obtidos no estágio obrigatório e em disciplinas da graduação, como Introdução à Ciência
de Dados, Redes Neurais e Aprendizado Profundo, Estatística e Redes Complexas para auxiliar
na tomada de decisões sobre as funcionalidades. Com o escopo principal e as funcionalidades
definidas, iniciou-se a implementação do sistema.

Começou-se a implementação através da configuração do banco de dados e do ambiente
virtual Python, já que eles compõem a base do sistema e todo o restante da implementação
depende que eles estejam funcionando corretamente. Como comentado na Seção 3.1, o Apêndice
A apresenta os detalhes de instalação e configuração. Depois de realizada a configuração,
montou-se a estrutura das duas classes, definindo os métodos das classes de pré-processamento e
modelagem. Os métodos implementados podem ser conferidos nas Figuras 12 e 13.

Os detalhes sobre as técnicas e tecnologias utilizadas já foram detalhados na Seção 2. Nas
Subseções 3.2.1 e 3.2.2 é possível conferir uma descrição resumida de como tais técnicas foram
implementadas nos métodos das classes. Já na Subseção 3.2.3, pode ser conferido o processo de
testes e validações realizados na construção do regressor.

3.2.1 Implementação do módulo de Pré-Processamento

Ambos os módulos apresentam um runner, que nada mais é que um método responsável
por coordenar a execução dos outros métodos. O runner do módulo de pré-processamento pode
ser conferido no código-fonte 2.

Código-fonte 2: Método runner do módulo de pré-processamento

1 def run_pre_processing(self):
2 df = self.assert_args()
3 df = self.set_target(df)
4 df = self.convert_to_numeric(df)
5 df = self.remove_zero_variance(df)
6 df = self.remove_null_values(df)
7 df = self.correlation(df)
8 df = self.knn_imputation(df)
9 df = self.normalization(df)

10 df = self.standardization(df)
11 df.to_pickle(f'../data/{self.run_id}/data.pkl')

3.2. Atividades Realizadas 39

Figura 12 – Métodos criados na classe responsável pelo pré-processamento

Fonte: Elaborada pelo autor.

O método construtor __init__ e o método assert_args são responsáveis por coletar as
informações do arquivo de configuração, validando-as. Esses métodos verificam por exemplo, se
o arquivo com os dados realmente existe e se os limiares definidos estão com valores válidos.
Um trecho exemplo do que foi implementado pode ser conferido no Código-fonte 3:

Código-fonte 3: Exemplos de assert utilizados na implementação

1 assert file_exists is True, (
2 'File_name file does not exist. Check the conf.ini file'
3)
4 assert self.null_threshold >= 0 and self.null_threshold <= 1, (
5 'Null_threshold value is not valid, use a value between 0 and 1'
6 ' in the conf.ini file'
7)

40 Capítulo 3. Desenvolvimento

8 assert self.target_name in df.columns, 'Target_name does not exist'
9 assert isinstance(self.imputation, bool), (

10 'Imputation variable is not valid, use True or False'
11)

O método str_to_bool é um método auxiliar, que ajuda na validação de variáveis boolea-
nas escritas fora do padrão pelo usuário no arquivo de configuração. Ao invés de aceitar apenas
False por exemplo, são aceitas as seguintes strings: ’false’, ’falso’, ’f’, ’0’, ’no’, ’n’.

Os métodos set_target e create_target_hist são responsáveis por manipular a variável
alvo do sistema que será predita no módulo de modelagem. A variável alvo é separada das outras
variáveis e um histograma é criado com os seus valores. A biblioteca pickle é utilizada para
salvar a variável alvo em um arquivo e a biblioteca pandas é utilizada para realizar a traçagem do
histograma (juntamente com o auxílio da biblioteca scipy, utilizada para definir a largura ideal
das barras, e da biblioteca matplotlib para salvar o histograma em um arquivo).

Os métodos convert_to_numeric e _one_hot_encoding são responsáveis por converter
variáveis não numéricas para numéricas, aplicando quando necessário a técnica de One-Hot

Encoding. Já o método knn_imputation é responsável por realizar a imputação de valores faltantes
nas variáveis. Para realizar a técnica One-Hot Encoding, utilizou-se a ferramenta get_dummies

da biblioteca pandas. Para realizar a imputação de valores faltantes, utilizou-se a ferramenta
KNNImputer da biblioteca sklearn.

Os métodos remove_zero_variance, remove_null_values e correlation são responsáveis
por remover as variáveis com variância nula, variáveis contendo mais valores nulos do que o
limiar definido pelo usuário e variáveis altamente correlacionadas entre si. Para implementar
esses métodos, utilizou-se as ferramentas var(), dropna() e corr() da biblioteca pandas. Com o
auxílio da ferramenta corr() também salvou-se um arquivo contendo a correlação entre todas as
variáveis.

Por fim, os métodos normalization e standardization são responsáveis por aplicar a
normalização ou a estandardização (utilizando a ferramenta StandardScaler() da biblioteca
sklearn) dos dados. O conjunto de dados manipulado e pré-processado é então salvo em um
arquivo .pkl, através da biblioteca pickle.

3.2.2 Implementação do módulo de modelagem

O método construtor __init__ e os métodos assert_args, str_to_bool e o run_modeling

apresentam funcionamento análogo ao módulo de pré-processamento, sendo métodos que cole-
tam informações do arquivo de configuração, validam tais informações e controlam a execução
dos outros métodos. O runner deste módulo pode ser conferido no Código-fonte 4.

Código-fonte 4: Método runner do módulo de modelagem

3.2. Atividades Realizadas 41

Figura 13 – Métodos criados na classe responsável pela modelagem

Fonte: Elaborada pelo autor.

1 def run_modeling(self):
2 self.assert_args()
3 self.read_train_test()
4 self.get_models()
5 self.save_mlflow()

O método read_train_test é responsável por ler os arquivos com os dados processados
pelo módulo anterior, dividindo-os em conjuntos de treino e teste através da ferramenta train_-

test_split da biblioteca sklearn.

O método get_models é responsável por selecionar os modelos definidos pelo usuário.
Um trecho desse método pode ser conferido no Código-fonte 5. Como pode ser conferido,
esse método possui diversos hiperparâmetros para cada modelo que serão utilizados no método
run_model para realizar o Grid-Search, definindo o melhor modelo para o problema.

Código-fonte 5: Método get_models da classe de modelagem

1 def get_models(self):
2 params = {
3 'XGB': {
4 'learning_rate': [0.01, 0.05],

42 Capítulo 3. Desenvolvimento

5 'n_estimators': [100, 250, 500],
6 'max_depth': [5, 7, 9],
7 'random_state': [42]
8 },
9 'MLP': {

10 'hidden_layer_sizes': [
11 (3,), (5,), (7,),
12 (3, 7, 3),
13 (25, 50, 25,),
14 (10, 25, 10),
15 (5, 10, 15, 10, 5),
16 (100,)
17],
18 'activation': ['relu'],
19 'solver': ['adam'],
20 'alpha': [0.00001, 0.0001, 0.001],
21 'random_state': [42]
22

23 }
24 }
25

26 if 'XGB' in self.models_list:
27 self.run_model(
28 XGBRegressor(), 'XGBoost', params['XGB'], 'tree'
29)
30 if 'MLP' in self.models_list:
31 self.run_model(
32 MLPRegressor(), 'MLP', params['MLP'], 'explainer'
33)

O método run_model receberá os parâmetros definidos passados pelo método get_models,
realizando o treinamento e avaliação dos modelos. Todo o processo de definição dos modelos,
treinamento e avaliação são feitos utilizando ferramentas da biblioteca sklearn. Além disso, dois
métodos auxiliares são utilizados: get_explainer e shap_create_plot. Esses métodos auxiliares
serão responsáveis por criar os gráficos de importância de variáveis utilizando a técnica SHAP

Values.

Por fim, o método save_mlflow é responsável por salvar os resultados do processo de
modelagem no servidor MLFlow, estando então disponíveis para consulta.

3.2.3 Teste e validação do sistema

Para desenvolver e ir aperfeiçoando o sistema, utilizou-se o conjunto de dados Student

Performance. Assim que cada funcionalidade era implementada, o sistema era executado para
garantir que tudo estivesse funcionando corretamente. Ao fim da implementação do sistema,

3.3. Resultados 43

realizou-se um último teste para verificar a execução das funcionalidades e iniciou-se o processo
de validação.

O processo de validação ocorreu através da execução do sistema utilizando como entrada
os outros dois conjuntos de dados existentes: The Boston Housing e Wine Quality. O conjunto de
dados Student Performance apresenta uma série de variáveis que descrevem estudantes de uma
escola e o objetivo do problema de regressão é prever qual será a nota da terceira avaliação. O
conjunto de dados The Boston Housing contém inúmeras variáveis quantitativas e qualitativas
que descrevem casas em Boston e o objetivo do problema de regressão é prever qual o valor
estimado da casa. Por fim, o conjunto de dados Wine Quality possui uma série de variáveis sobre
vinhos, tendo como objetivo a atribuição de uma nota que defina a qualidade do vinho de acordo
com as características presentes nas variáveis.

Para garantir que todas as funcionalidades fossem validadas, criou-se novas variáveis
artificiais nos conjuntos de dados. Em seguida, executou-se o sistema para os dois datasets,
validando assim o sistema.

3.3 Resultados

Testou-se o sistema nos três conjuntos de dados propostos e o sistema funcionou como
esperado para todas as entradas. Desta forma, espera-se ter atingido um nível de generalização e
tolerância à falhas bons o suficiente para suportar uma série de problemas de regressão diferentes.
Na Figura 14 é possível conferir a interface do MLFLow, listando todos os experimentos. Na
Figura 15 é possível conferir o histograma com a variável alvo. Nas Figuras 16 e 17 é possível
conferir as saídas das etapas de pré-processamento e modelagem, respectivamente. Por fim, nas
Figuras 18 e 19 é possível conferir os gráficos sumário e enxame de importância de variáveis. As
saídas foram geradas para um teste utilizando o dataset The Boston Housing Prices.

3.4 Dificuldades e Limitações

As principais dificuldades enfrentadas no desenvolvimento do projeto estão relacionadas
à escolha das técnicas e tecnologias utilizadas. Como os dados possuem variações gigantescas em
diversos aspectos, como distribuição, dimensionalidade, quantidade e magnitude por exemplo,
escolher técnicas que funcionassem em diferentes cenários e trouxessem resultados satisfatórios
tornou-se de um grande desafio.

As limitações encontradas no sistema estão principalmente relacionadas ao alto consumo
de poder computacional (processamento e memória). Para realizar a modelagem em um conjunto
de dados com milhões de linhas ou até realizar manipulações utilizando a biblioteca Pandas,
uma grande quantidade de memória é consumida. Logo, caso o sistema venha a ser utilizado
em computadores pessoais, as limitações do sistema estarão ligadas diretamente ao poder

44 Capítulo 3. Desenvolvimento

Figura 14 – Lista com os experimentos realizados com os datasets

Fonte: Elaborada pelo autor.

computacional da máquina utilizada. Nestes casos, recomenda-se a utilização de clusters ou
soluções em nuvem fornecidas por empresas como a Amazon por exemplo, que oferece através
do serviço Web AWS-EC2 (Amazon Web Service - Elastic Compute Cloud) instâncias com
capacidade computacional redimensionável.

3.4. Dificuldades e Limitações 45

Figura 15 – Histograma com a variável alvo

Fonte: Elaborada pelo autor.

Figura 16 – Resultados da etapa de pré-processamento

Fonte: Elaborada pelo autor.

46 Capítulo 3. Desenvolvimento

Figura 17 – Resultados da etapa de modelagem, contendo os modelos e métricas de desempenho

Fonte: Elaborada pelo autor.

Figura 18 – Gráfico SHAP com o sumário dos dados

Fonte: Elaborada pelo autor.

3.4. Dificuldades e Limitações 47

Figura 19 – Gráfico SHAP enxame com informações de importância de variáveis

Fonte: Elaborada pelo autor.

49

Capítulo 4

CONCLUSÃO

4.1 Contribuições
Realizar um trabalho que necessitou da integração de diferentes ferramentas, técnicas

e tecnologias tratou-se de uma experiência valiosa e que com certeza proporcionou inúmeros
ensinamentos.

No nível pessoal, o trabalho realizado trouxe a experiência da execução de um projeto
de longo prazo, sendo necessário ter organização e disciplina para realizar um planejamento
detalhado das atividades que seriam desenvolvidas, fazendo com que o projeto pudesse ser
finalizado à tempo, levando em conta inclusive eventuais contratempos que poderiam ocorrer.

No nível profissional, obteve-se um conhecimento valioso em relação à pesquisas biblio-
gráficas, que permitem que um profissional esteja sempre atualizado com o estado da arte de
diferentes áreas do conhecimento. Além disso, os conceitos aprendidos certamente agregam aos
conhecimentos já existentes sobre os temas estudados, permitindo a formação de um profissional
mais completo e preparado para o mercado de trabalho.

51

REFERÊNCIAS

CHEN T.; GUESTRIN, C. XGBoost: A scalable tree boosting system. In: PROCEEDINGS
OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE
DISCOVERY AND DATA MINING. São Francisco, Califórnia, EUA, 2016. Disponível em:
<http://doi.acm.org/10.1145/2939672.2939785>. Citado na página 19.

CORTEZ, P.; CERDEIRA, A.; ALMEIDA, F.; MATOS, T.; REIS, J. Modeling wine preferences
by data mining from physicochemical properties. Decis. Support Syst., v. 47, n. 4, p. 547–553,
2009. Disponível em: <http://dblp.uni-trier.de/db/journals/dss/dss47.html#CortezCAMR09>.
Citado na página 33.

CORTEZ, P.; SILVA, A. M. G. Using data mining to predict secondary school student per-
formance. In: A. BRITO AND J. TEIXEIRA EDS., PROCEEDINGS OF 5TH FUTURE BU-
SINESS TECHNOLOGY CONFERENCE (FUBUTEC 2008). Porto, Porgugal, 2008. ISBN
978-9077381-39-7. Citado na página 33.

DASH, M.; LIU, H. Feature selection for classification. Intelligent Data Analysis, v. 1, p.
131–156, 1997. Citado na página 22.

FREEDMAN, D.; DIACONIS, P. On the Histogram as a Density Estimator: L 2 Theory.
1981. Citado na página 21.

HARRISON, D.; RUBINFELD, D. Hedonic housing prices and the demand for clean air. Journal
of Environmental Economics and Management, v. 5, p. 81–102, 03 1978. Citado na página
33.

HE, X.; ZHAO, K.; CHU, X. Automl: A survey of the state-of-the-art. Knowledge-Based
Systems, v. 212, p. 106622, 2021. ISSN 0950-7051. Disponível em: <https://www.sciencedirect.
com/science/article/pii/S0950705120307516>. Citado na página 17.

HUNTER, J. D. Matplotlib: A 2d graphics environment. Computing in science & engineering,
IEEE, v. 9, n. 3, p. 90–95, 2007. Citado na página 19.

LUNDBERG, S. M.; LEE, S.-I. SHAP Values Github Page. 2017. <https://github.com/
slundberg/shap>. [Online: Accessed 1-Nov-2021]. Citado 2 vezes nas páginas 31 e 32.

. A unified approach to interpreting model predictions. In: GUYON, I.; LUX-
BURG, U. V. et al. (Ed.). Advances in Neural Information Processing Systems 30.
Curran Associates, Inc., 2017. p. 4765–4774. Disponível em: <http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf>. Citado na página 19.

MAKRIDAKIS, S. The forthcoming artificial intelligence (ai) revolution: Its impact on society
and firms. Futures, v. 90, p. 46–60, 2017. ISSN 0016-3287. Disponível em: <https://www.
sciencedirect.com/science/article/pii/S0016328717300046>. Citado na página 17.

MCKINNEY, W. et al. Data structures for statistical computing in python. In: Proceedings of
the 9th Python in Science Conference. Austin, TX: [s.n.], 2010. v. 445, p. 51–56. Citado na
página 19.

http://doi.acm.org/10.1145/2939672.2939785
http://dblp.uni-trier.de/db/journals/dss/dss47.html#CortezCAMR09
https://www.sciencedirect.com/science/article/pii/S0950705120307516
https://www.sciencedirect.com/science/article/pii/S0950705120307516
https://github.com/slundberg/shap
https://github.com/slundberg/shap
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://www.sciencedirect.com/science/article/pii/S0016328717300046
https://www.sciencedirect.com/science/article/pii/S0016328717300046

52 Referências

MLFLOW. MLFlow Documentation Page. 2018. <https://mlflow.org/docs/latest/
tutorials-and-examples/tutorial.html>. [Online: Accessed 1-Nov-2021]. Citado na pá-
gina 35.

PEDREGOSA, F.; VAROQUAUX, G. et al. Scikit-learn: Machine learning in python. Journal
of machine learning research, v. 12, n. Oct, p. 2825–2830, 2011. Citado na página 19.

REFAEILZADEH, P.; TANG, L.; LIU, H. Cross-validation. In: . Encyclopedia of Data-
base Systems. New York, NY: Springer New York, 2016. p. 1–7. ISBN 978-1-4899-7993-3.
Disponível em: <https://doi.org/10.1007/978-1-4899-7993-3_565-2>. Citado na página 25.

ROSSUM, G. V.; DRAKE, F. L. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace,
2009. ISBN 1441412697. Citado na página 19.

SOLA, J.; SEVILLA, J. Importance of input data normalization for the application of neural
networks to complex industrial problems. IEEE Transactions on Nuclear Science, v. 44, n. 3,
p. 1464–1468, 1997. Citado na página 24.

TROYANSKAYA, O.; CANTOR, M.; SHERLOCK, G.; BROWN, P.; HASTIE, T.; TIBSHIRANI,
R.; BOTSTEIN, D.; ALTMAN, R. B. Missing value estimation methods for DNA microarrays
. Bioinformatics, v. 17, n. 6, p. 520–525, 06 2001. ISSN 1367-4803. Disponível em: <https:
//doi.org/10.1093/bioinformatics/17.6.520>. Citado na página 23.

WANG, W.; CHAKRABORTY, G.; CHAKRABORTY, B. Predicting the risk of chronic kidney
disease (ckd) using machine learning algorithm. Applied Sciences, v. 11, n. 1, 2021. ISSN
2076-3417. Disponível em: <https://www.mdpi.com/2076-3417/11/1/202>. Citado 2 vezes nas
páginas 28 e 30.

https://mlflow.org/docs/latest/tutorials-and-examples/tutorial.html
https://mlflow.org/docs/latest/tutorials-and-examples/tutorial.html
https://doi.org/10.1007/978-1-4899-7993-3_565-2
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1093/bioinformatics/17.6.520
https://www.mdpi.com/2076-3417/11/1/202

53

APÊNDICE A

ESTRUTURA DO PROJETO E INSTALAÇÃO
DO SISTEMA

A.1 Estrutura do Projeto
Todo o projeto foi desenvolvido e testado utilizando o sistema operacional Ubuntu 20.04.

A estrutura de arquivos no diretório do projeto pode ser conferida na Figura 20.

Figura 20 – Diretório do projeto

Fonte: Elaborada pelo autor.

Dentro da pasta code existem os arquivos python que realizam as tarefas de pré-processamento
e modelagem. Já a pasta data deverá possuir os arquivos .csv que originarão as análises. A pasta
mlflow é utilizada para armazenamento de resultados e execuções, não sendo necessária sua
manipulação.

O arquivo conf.ini apresenta as configurações que o usuário deve preencher, já o arquivo
requirements.txt possui os pacotes e bibliotecas necessários para a execução do projeto. Por
fim, o arquivo README.md é utilizado apenas para trazer informações sobre o projeto em
repositórios git.

O arquivo de configuração conf.ini pode ser conferido no Código-fonte 6. As linhas que
começam com # são comentários e explicam o que deve ser preenchido em cada variável.

Código-fonte 6: Arquivo conf.ini

54 APÊNDICE A. Estrutura do Projeto e Instalação do Sistema

1 # Note: fill all the variables (including the strings) without any
2 # quotation marks ("" or '')
3

4 [PREPROCESS]

5 # Name of the csv file with the data. The csv file must be inside
6 # the data folder.
7 file_name = winequality-red.csv
8 # Null values acceptable threshold. All the columns that have more than
9 # (null_threshold*100)\% null values will be removed. If you don't want

10 # to remove any columns, use null_threshold = 0.
11 null_threshold = 0.1
12 # Correlation threshold to drop highly correlated variables. If you don't
13 # want to remove any columns, use corr_threshold = 1.
14 corr_threshold = 0.8
15 # Name of the target that will be used to train the model.
16 target_name = quality
17 # Check if you want to replace missing data using the KNN imputation method.
18 imputation = False
19 # Check if you want to normalize the data using min-max scaler.
20 # If you use normalization, you can't use standardization.
21 norm = False
22 # Check if you want to rescale the data using a standardization method.
23 # If you use standardization, you can't use normalization.
24 standard = True
25 # Run_id that identify the execution.
26 run_id = 5
27

28 [MODELING]

29 # Select what models you want to test. To select a specific model,
30 # copy the word inside the parentheses and write it in the models
31 # parameter, separating each model using a comma (,).
32 # The available models are:
33 # 1) KNeighborsRegressor (KNN)
34 # 2) XGBRegressor (XGB)
35 # 3) LassoRegressor (LR)
36 # 4) RandomForestRegressor (RFR)
37 # 5) MLPRegressor (MLP)
38 models = RFR, KNN
39 # Number of folds for K-Fold Cross-Validation
40 folds = 5
41 # Test size for train-test split. A good value is between

A.2. Instalação do sistema e configurações adicionais 55

42 test_size = 0.2
43 # Name of the experiment that will be saved in MLFlow
44 experiment_name = wine_testing
45 # Name of the run that will be saved in MLFlow
46 run_name = rfr_knn_testing

A.2 Instalação do sistema e configurações adicionais

Antes da primeira execução do sistema, é necessário instalar o ambiente virtual. Estando
dentro da pasta do projeto, a instalação é feita através do seguinte comando:

$ python3 -m venv .venv

Com o ambiente virtual instalado, é necessário ativá-lo utilizando o seguinte comando:

$ source .venv/bin/activate

Em seguida, deve ocorrer a instalação dos pacotes e bibliotecas necessários, através
da utilização do arquivo de texto requirements.txt e podem ser instalados através do seguinte
comando:

$ pip install -r requirements.txt

Para configurar a base PostgreSQL, responsável por armazenar as informações do ML-

Flow, é necessário utilizar o seguinte comando:

$ sudo -u postgres psql

E então digitar o seguinte comando:

CREATE DATABASE mlflow_db;
CREATE USER mlflow_user WITH ENCRYPTED PASSWORD 'password';
GRANT ALL PRIVILEGES ON DATABASE mlflow_db TO mlflow_user;

Obs: a senha ’password’ pode ser mudada para uma senha de sua preferência.

Por fim, para ativar o servidor MLFlow basta utilizar o seguinte comando com o ambiente
virtual ativado:

56 APÊNDICE A. Estrutura do Projeto e Instalação do Sistema

mlflow server --backend-store-uri
postgresql://mlflow_user:password@0.0.0.0/mlflow_db
-h 0.0.0.0 --default-artifact-root
file:/home/<path_to_project>/mlflow/mlruns/
--port 5000

Obs: é possível colocar o comando de ativação do MLFLow no arquivo .bashrc, asso-
ciando um alias ao comando para facilitar a execução. No arquivo, basta colocar a seguinte
expressão:

alias mlflow_server='source .venv/bin/activate &&
mlflow server --backend-store-uri
postgresql://mlflow_user:password@0.0.0.0/mlflow_db
-h 0.0.0.0
--default-artifact-root file:/home/<path_to_project>/mlflow/mlruns/
--port 5000'

Desta forma, basta utilizar o comando mlflow_server que o ambiente virtual e o servidor
serão ativados automaticamente.

O servidor ficará ativo e disponível para acesso no endereço 0.0.0.0:5000, bastando
utilizar um navegador de internet para acessá-lo.

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Lista de ilustrações
	Lista de códigos-fonte
	Sumário
	Introdução
	Motivação e Contextualização
	Objetivos
	Organização

	Métodos, Técnicas e Tecnologias Utilizadas
	Tecnologias Utilizadas
	Detalhamento do módulo: Pré-Processamento
	Criação de histograma com a variável alvo e tabela de correlações
	Remoção de variáveis altamente correlacionadas, com variância nula e com valores faltantes
	Conversão de variáveis para tipos de dados válidos e imputação de valores faltantes
	Estandardização e normalização dos dados

	Detalhamento do módulo: Modelagem
	Separação dos dados em treino e teste
	Escolha dos modelos de aprendizagem de máquina
	Escolha das métricas para cálculo do desempenho
	Criação dos gráficos de importância de variáveis
	Registro dos resultados no MLFlow

	Dados utilizados para teste do sistema

	Desenvolvimento
	O Projeto
	Atividades Realizadas
	Implementação do módulo de Pré-Processamento
	Implementação do módulo de modelagem
	Teste e validação do sistema

	Resultados
	Dificuldades e Limitações

	Conclusão
	Contribuições

	Referências
	Estrutura do Projeto e Instalação do Sistema
	Estrutura do Projeto
	Instalação do sistema e configurações adicionais

